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An approximate formula is obtained to compute the heat-conduction coefficient of 
multicomponent dense gas mixtures. 

The modified Enskog theory [i] turns out to be useful for calculating the transport coef- 
ficients of pure gases. The Enskog--Thorn theory of binary mixtures of solid spheres [2] and 
its extension to a multicomponent mixture [3] has been used successfully to compute the trans- 
port coefficients of gas mixtures. A computation of the viscosity and heat-conduction coef- 
ficients of a number of mixtures [4, 5] showed the reliability and high accuracy of the method. 
Although it is quite tedius, its theoretical foundation should especially be emphasized, 

In this paper the original method [4, 5] is simplified without a noticeable reduction in 
the accuracy of the results. Simplification is achieved by using the assumption, borrowed 
from kinetic rarefied gas theory, about the smallness of the nondiagonal elements of the 
matrix as compared with the diagonal elements. An approximate formula is obtained to compute 
the heat-conduction coefficient of multicomponent dense gas mixtures that is analogous to the 
formula for the viscosity coefficient [6]. In the limit both formulas go over into the known 
Sutherland--Vasil'eva expressions for zero density. A computation of the heat-conduction coef- 
ficient for air and a helium-neon mixture is performed. Comparison of the computation results 
with generalized data [7] and with a computation by the original method [5] shows agreement 
with 1-2% !imits. 

i. Computation Method 

The original formula for the heat-conduction coefficient of a multicomponent dense mixture 
of solid spheres is written in the form [5] 

~mix  = - -  - ~  k m i x ,  (I) 
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o: 
The quantities Yij in (i)-(5) are defined in terms of the diameter of the solid spheres 

0 0 
Vii = gi = -'~ bi = - -~b u = --~ , (6) 

6 ,  6 ( 2  a)  
"~'i, = T ,j = T  - 3 a ~  ' ( 7 )  

I 
mJ - -7- (m + m), 

2 

Xi" = ~'i are pseudoradial distribution functions for the molecules of species i and j in the 
3 J 

presence of molecules of all the other components in the mixture. They are denoted by bars 
up above to distinguish them from the true radial distribution functions Xij related to the 
equation of state. The quantities A~j and B~j are dimensionless ratios of collision integrals, 
equal to one for solid spheres, and close to one for other kinds of interaction. 

Determination of the parameters 5i~ and ~ij is central to the utilization of (i). As 
in the modified Enskog theory [i], Yij Is expressed in terms of the second viriai coefficient 
and its te:~,erature derivative: 

6 b = 6 B dBu ] . -~ - [  u + T  
?n = - ~  iJ dT J 

(8) 

Since experimental values of Bij are often missing for i # j, the combination rule (7) 
can be used and we can obtain 

?~/3 1 ,  11'3 ~/3. 
= ~ - t ~ ' ~  + ~ i /  ). (9) 

The pseudoradial distribution functions Xi of the pure gases comprising the mixture are 
evaluated from the Enskog equation 

1 ~ 1.2-t- 0 757nbigs , (i0) 
nbi Oi nbix i 

where 

!5 R o (li) ^ 0  /~0 0 6i = ~.i , & (nnon); ;~ (mon) rii . 
4 M, 

0 The values of Xi(n, T), %~, and n i are considered known from experiment, and b i is found in 
conformity with (8). 

Equation (i0) is written down for a polyatomic gas [i]. If the gas is monatomic, then 
6i = i and the equation has the usual form. To simplify the writing it is convenient to intro- 
duce the notation 

z = b~%; ~#(~~ = c 

Taking (12) into account, (i0) is reduced to a quadratic equation in z 

0.757 1.2 \ z 2 -]- / c + 1 O. 

(12) 

(13) 

Then one of the two branches of the solution of (13) is selected that corresponds to 
the minus sign before the square root: 
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Z = [(c / 1.2 12 .... 0,757 1~2 _ _ ~ /  (v 4 - -  
6 \, 6 ) 6 A/ 

(c 1,26 -l-~// (c 1"2240"7576 --~ 
(14) 

On this branch z § 0 as n § O~ 

The constraint b < bli m results from (14) where 

bl im - -  ( 1 5 )  
)~~ 1,2 q- 2 1 /0 .7576 

With respect to the functions Xi determined by means of (14) from ~easurements of the heat- 
conduction coefficient, all assertions in [6] about the functions Xi obtained from measure- 
ments of the viscosity coefficient are valid. We add that they often are not in agreement 
with each other [5], 

The mixed pseudoradial distribution functions ~ij can be obtained from ~i if the combina- 
tion rule (7) and the virial expansion of the functions Xi and Xij [5] are used. We write 
down an expression for the mixed pseudoradial distribution functions Xij of a binary mixture: 

- -  ~ 1 - -  2 

Z11 = 1 + x 1 (Zl - -  1) q- ~ xe (Zl - -  1) + ~ x2 [ (~  - -  --1) ' /a  + ( ~  - -  1)l/a] 3 - -  

3 : __ - - X 2  (~- 1 - -  1)l/3[(X, - 1) ~/a -~- ( ~ - -  1) '/el z, 
5 

( 1 6 )  
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Here •  is obtained from ~ by a change of subscript i + 2, 2 § i. 

Let us make a remark. The value of the functions Xi evaluated by means of (14) by using 
(8) for b i can turn out to be a complex number for a certain density [5]. Then b i is deter- 
mined from the minimum on the curve of the dependence of the quantity l/(X~ on the density 
[8]: 

b =bmi~ = ~ - - ~ n  ~[~ 1.2 + 2 1 /0 .7576  ( 1 8 )  

2. Approximate Formulas 

Derivation of the approximate formula for the heat-conduction coefficient of a multicom- 
ponent dense mixture of monatomic gases is performed analogously to the derivation of the cor- 
responding formula for the viscosity coefficient [6]. We write down just the final result 

v 
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@ kmix, 
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where Yi and kraix are given by (2) and (5) 

G~ --  1 
2A~ 

5 
(nz, - -  mj) 3m.iB~ q- 4 (6m~ - -  5rag)] + 8mdn:A*. 

(ml + ra;) ~ 

A i  

~ 0  " 
if 

(20) 

307 



TABLE i. Heat-Conduction Coefficient of a Helium-Neon Mix- 
ture, MW/m.K 

np 
kmole / m 3 

xl=O, 182 

comp. [5] 

60,60 60 
60,98 61 
61,41 61,5 
61,90 62 
62,42 62,7 
62,97 63 
63,52 64 
64,13 64,5 
64,78 65 
65,45 65,5[ 

I 

x~:0,416 

comp. [51 

x~=0,586 

comp. [51 

79,40 79 
79,74 79,3 
80,10 80 
80,53 80,5 
80,99 80,99 
81,52 81,3 
82,08 82 
82,64 82,5 
83,24 83 
80,89 83,7 

96,76 
97,18 
97,65 
98,13 
98,69 
99,34 

100,0 
100,6 
101.3 
102,2 

xt=0.788 

I comp. [51 

94,5 ! 122,2 
95 122,8 
95,5 123,4 
96,0 124,4 
96,6 125,l 
97,0 126,0 
98,0 126,9 
98 127,9 
98,5 128,9 
99,5 130,1 

121,5 
122,0 
122,8 
123,5 
124 ,3  
125,3 
126,2 
127,0 
127,9 
128,8 

TABLE 2, Heat-Conduction Coefficient of 
Air, MW/m.K 

p,bar 

24,73 
49,29 
73,90 
98,84 

124,2 
150,4 
177,6 
206,3 

n ,  I ~. 
Im~ comp~ 

26,02 
27,18 
28,54 
30 O0 
31,64 
33,41 

I 35,31 
37,35 

] 39,50 

[7] 
p,bar 

n, I 

kmole/m ~' comp~ 

26.31 
27158 
28,93 
30,11 
31,96 
33,69 
35,44 
37,35 
39,41 

236,7 
269,2 
304,8 
343,1 
385,5 
432,3 
484,7 
543,7 

1l 
12 
13 
14 
15 
16 

41,76 
44,19 
46,73 
49,41 
52,25 
55, ~3 
58,39 
61,8O 

[7] 

41,62 
43,99 
46,55 
49,30 
52,28 
55,48 
58,94 
62,72 

O O 
The ratio %i /lij can be written in the Mason--Saxon form 

- -  1 - }  (21) 

z0j 4 / ) 

For a binary gas mixture (19) has the form 

2 0 - 
Zm,x : (Vl/Xl)~Z ~ IZI, + (jU2/X2) ~2/X22 -]- kmix. 

1 + GX12 (x6xO (Zl~lZn) 1 + G~1 (x~Ix~)(X2~IZ2j 
(22) 

Let us examine two particular cases of (22). 

I. The pseudoradial functions Xi of the components comprising the mixture are equal to 
each other (for instance, for a He--Ne mixture this assumption is valid to 1% accuracy at 300~ 
Then the mixed pseudoradial distribution functions Xij are in agreement, i.e., 

Formula (22) simplifies to 

%1 : X~ : %u : X2~ ---- Zm : ~" (23) 

1[ (vllXl)~X ~ (v~txJ2X~ ] 
>Vrnix -- -- -~ -~ kmix. (24) 

% 1 -]- G1%2 (X2/X1) 1 "+- 62~I (X1/X2) 

2. One of the functions X~ equals I identically (as is valid, for instance, for oxygen, 
in a mixture with nitrogen at 3~0~ to around 2% accuracy). 

In this case (16) and (17) reduce to the following 

X~l = 1 +  x x ( ~ - -  1), (25)  
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TABLE 3. Quantities Used in Computing the Heat-Conduction 
Coefficient 

He-Ne N2 O2 Air Parameter He Ne mixture 

! 

"D2' t0a, ma/km~ 

Xo i , MW 
m.K 

MW 
Xi~176 , 

16,58 

155,9 

155,9 

21,07 

49,45 

49,45 

18,58 

10t,1 

i01,1 

73,99 66,62 

25,85 26,59 

19,84 20,19 

70,24 

20,03 

%,2 : X%2 = 1.4- ~ (%-~-- I). (26 )  
5 

To compute the heat-conduction coefficient of a mixture of polyatomic gases, it is split 
into parts specified by the translational (mon) and internal (int) degrees of freedom 

)~ = )~ (mon)  + )~ ( int) .  (27) 

Making the assumption that the energy of the internal degrees of freedom is transported 
. . ~ 

just by diffusion, as well as the assumption about independence of the quantltles A2= and B=a 
• • 

from the inelastic collisions, we represent l(int) by using the Hirschfelder--Aiken formula 

[51 

v v 

_ _  . 

Zu ~ xi D~j 
(28)  

If known relationships of kinetic theory for the diffusion coefficients Dij are used [5], 
we obtain the following relationship in place of (28) 

v v 7-' 
-- ~ ~o", - , " (29) 

" :  / = 1  " 

The p a r t  o f  the h e a t - c o n d u c t i o n  c o e f f i c i e n t  due to  the  t r a n s l a t i o n a Z  degrees of  f reedom 
l(mon) i s  c a l c u l a t e d  by us ing  (19) .  

3. Results of a Computation 

As examples of the utilization of the approximate formulas, we calculated the heat-con- 
duction coefficients of the monatomic He--Ne gas mixtures, the mixture 0.78Na + 0,220a, and 
the mixture 0.354He + 0.646Na at a 300~ temperature. 

Formula (24) was used in computing the heat-conduction coefficient of the He--Ne mixture. 
O 

Values of i i are borrowed from [9], and of 7ij and • from [5]. 

A comparison of the results obtained by the approximate methodology (formula (24)), with 
a computation by the original method (formula (I!)) performed in [5] is given in Table i. 
The difference reaches 2% only for the 58.6% He composition. 

Formulas (22) and (29) together with the relationships (.25) and (26) were used in the 
computation of the heat conduction for the mixtures 0.78N= + 0.2202 and 0.354He + 0.646N2. 
Values of li and ~ are borrowed from [7] and [9]. 

A comparison between the calculated results and the generalized data in [7] is given for 
air in Table 2. The deviation does not exceed 1.6%, 

The computed values of the heat-conduction coefficient for the mixture 0.354He + 0.646Na 
were compared with the experimental data in [i0], The deviation is within the limits of ex- 
perimental data error (2%) at all pressures with the exception of 200 bar, where it is 6-8%. 
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However, it should be noted that the experimental values of the heat-conduction coefficient 
at this pressure and the temperature 299.46~ (see [i0]) disturb the monotonic growth of the 
heat-conduction coefficient with temperature by forming a local minimum at the 200-bar isobar. 

Values of Yij and %~j used in the computations are presented in Table 3. 

The results obtained show that the proposed methodology permits computation of the heat- 
conduction coefficient of gas mixtures of elevated density with high accuracy. 

NOTATION 

n, density; m, molecular mass; xi, molar fraction of the i-th component; v, number of 
mixture components; I, heat-conduction coefficient; the superscript 0 denotes quantities for 

O 
a rarefied gas, subscripts are used to number the mixture components; lij , heat-conduction 
coefficient of a rarefied gas with the molecular mass 2mimj(m i + mj). 
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